
WJP https://www.wjgnet.com 315 February 19, 2024 Volume 14 Issue 2

World Journal of 

PsychiatryW J P
Submit a Manuscript: https://www.f6publishing.com World J Psychiatry 2024 February 19; 14(2): 315-329

DOI: 10.5498/wjp.v14.i2.315 ISSN 2220-3206 (online)

META-ANALYSIS

Alterations of sleep deprivation on brain function: A coordinate-
based resting-state functional magnetic resonance imaging meta-
analysis

Qin Zhang, Yong-Zhe Hou, Hui Ding, Yan-Ping Shu, Jing Li, Xi-Zhao Chen, Jia-Lin Li, Qin Lou, Dai-Xing Wang

Specialty type: Neuroimaging

Provenance and peer review: 
Unsolicited article; Externally peer 
reviewed.

Peer-review model: Single blind

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B 
Grade C (Good): 0 
Grade D (Fair): 0 
Grade E (Poor): 0

P-Reviewer: Sawadogo W, United 
States

Received: November 29, 2023 
Peer-review started: November 30, 
2023 
First decision: December 11, 2023 
Revised: December 21, 2023 
Accepted: January 3, 2024 
Article in press: January 3, 2024 
Published online: February 19, 2024

Qin Zhang, Hui Ding, Jing Li, Xi-Zhao Chen, Qin Lou, Dai-Xing Wang, Department of Radiology, 
The Second People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, 
China

Qin Zhang, Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang 550000, 
Guizhou Province, China

Yong-Zhe Hou, Yan-Ping Shu, Department of Psychiatry of Women and Children, The Second 
People’s Hospital of Guizhou Province, Guiyang 550000, Guizhou Province, China

Jia-Lin Li, Medical Humanities College, Guizhou Medical University, Guiyang 550000, 
Guizhou Province, China

Corresponding author: Hui Ding, Doctor, Professor, Department of Radiology, The Second 
People’s Hospital of Guizhou Province, No. 206 South Section of Xintian Avenue, Yunyan 
District, Guiyang 550000, Guizhou Province, China. 857747438@qq.com

Abstract
BACKGROUND 
Sleep deprivation is a prevalent issue that impacts cognitive function. Although 
numerous neuroimaging studies have explored the neural correlates of sleep loss, 
inconsistencies persist in the reported results, necessitating an investigation into 
the consistent brain functional changes resulting from sleep loss.

AIM 
To establish the consistency of brain functional alterations associated with sleep 
deprivation through systematic searches of neuroimaging databases. Two meta-
analytic methods, signed differential mapping (SDM) and activation likelihood 
estimation (ALE), were employed to analyze functional magnetic resonance 
imaging (fMRI) data.

METHODS 
A systematic search performed according to PRISMA guidelines was conducted 
across multiple databases through July 29, 2023. Studies that met specific inclu-
sion criteria, focused on healthy subjects with acute sleep deprivation and 
reported whole-brain functional data in English were considered. A total of 21 
studies were selected for SDM and ALE meta-analyses.
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RESULTS 
Twenty-one studies, including 23 experiments and 498 subjects, were included. Compared to pre-sleep 
deprivation, post-sleep deprivation brain function was associated with increased gray matter in the right corpus 
callosum and decreased activity in the left medial frontal gyrus and left inferior parietal lobule. SDM revealed 
increased brain functional activity in the left striatum and right central posterior gyrus and decreased activity in 
the right cerebellar gyrus, left middle frontal gyrus, corpus callosum, and right cuneus.

CONCLUSION 
This meta-analysis consistently identified brain regions affected by sleep deprivation, notably the left medial 
frontal gyrus and corpus callosum, shedding light on the neuropathology of sleep deprivation and offering insights 
into its neurological impact.

Key Words: Sleep deprivation; Resting-state-functional magnetic resonance imaging; Activation likelihood estimation-meta; 
Signed differential mapping-meta
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Core Tip: This meta-analysis revealed consistent brain functional changes resulting from sleep deprivation, revealing notable 
alterations in the left medial frontal gyrus and corpus callosum. These findings offer crucial insights into the neurological 
impact of sleep loss and highlight specific brain regions affected by sleep deprivation, which may aid in understanding its 
neuropathological implications.
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INTRODUCTION
Sleep deprivation refers to insufficient or severe lack of sleep caused by various factors. With the acceleration of the pace 
of societal life and the escalation of individual pressures, sleep deprivation has evolved into a widespread public health 
concern[1]. The significance of high-quality sleep for maintaining one’s well-being cannot be overlooked. Reports indicate 
that approximately one-third or more of adults in the Americas, Europe, and Asia consistently fall short of the 7 h of 
nightly sleep recommended by public health authorities[2-5]. Furthermore, the ceaseless 24-h nature of modern society 
readily disrupts the human body’s circadian rhythms. Both insufficient sleep and disturbances in the sleep-wake cycle 
exert substantial stress on physical health, including an increased risk of obesity[6,7]. Research has revealed that the risk 
of obesity increases by 38% when comparing individuals with a short sleep duration (typically defined as less than 5 h or 
6 h per day) to those with a normal sleep pattern[8]. Additionally, adverse metabolic health outcomes, such as type 2 
diabetes, cardiovascular disease, hypertension, and lipid abnormalities, are frequently associated with sleep deprivation 
and/or circadian rhythm disruptions[9,10]. Prolonged sleep deprivation has been unequivocally linked to diminished 
cognitive abilities, altered emotional states, and the onset of inflammation and hormonal imbalances[11,12]. However, our 
current understanding of how sleep deprivation precipitates changes in brain function is incomplete.

Neuroimaging analysis methods offer potent tools for investigating the neurobiological mechanisms of neuropsy-
chiatric disorders. However, despite the promising prospects of neuroimaging, recent research reports have cast doubts 
upon the reliability of studies in this domain, raising concerns regarding issues such as small sample sizes, clinical hetero-
geneity, and the correction of multiple comparisons. These collective concerns have contributed to an increase in false-
positive rates[13]. Notwithstanding these limitations, neuroimaging techniques continue to provide valuable insights into 
the effects of sleep deprivation on the brain. It is essential to employ neuroimaging to detect and elucidate neurobiolo-
gical alterations in specific regions associated with sleep deprivation. Meta-analytic approaches surmount the challenges 
of methodological diversity and outcome heterogeneity, aiding in the identification of trustworthy, practically significant 
research findings. In pursuit of comprehensive and persuasive outcomes, this study simultaneously employed both 
signed differential mapping (SDM) and activation likelihood estimation (ALE) meta-analytic methods.

While ALE-meta analysis has been conducted previously to investigate sleep deprivation, this study not only 
incorporated resting-state data but also task-related and positron emission tomography (PET) data[14]. The question of 
whether the integration of results varies due to the inclusion of different data types, such as functional connectivity (FC), 
independent component analysis (ICA), and cerebral perfusion data, as well as whether different analytical methods 
impact the distribution of neurobiological biomarkers in sleep-deprived patients warrants further exploration. For 
example, some scholars argue that FC and ICA methods primarily involve examining functional correlations between 
seed points and the surrounding brain regions; however, these correlations may not align with the spontaneous neural 
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brain function activity reflected by regional homogeneity (ReHo), amplitude of low-frequency fluctuation (ALFF), 
fraction ALFF (fALFF), or dynamic ALFF (dALFF) unless the emphasis is placed on studies of analogous networks[15]. 
Furthermore, cerebral perfusion delineates the metabolic status and neural activity of corresponding brain regions by 
measuring local cerebral blood flow but may not comprehensively encapsulate the spontaneous functional activity of 
neurons in the brain[16]. Despite notable success in transdiagnostic meta-analyses, the absence of crucial single-diagnosis 
findings underscores the ongoing importance of disease-specific methods as a critical research area.

Through functional neuroimaging SDM and ALE meta-analyses, we endeavored to elucidate the primary cerebral 
regions underlying alterations in brain function within the context of sleep deprivation. Our fundamental hypothesis 
posits that post-sleep deprivation imaging will reveal distinct cerebral functional patterns compared to pre-sleep 
deprivation imaging, potentially revealing the neurotraumatic mechanisms associated with sleep deprivation. This 
investigation exclusively encompasses studies concerning the reactivity of localized brain functional activities to compre-
hensively explore the localized activity patterns within sleep-deprived brain regions. With this approach, we aspire to 
delve deeper into the repercussions of sleep deprivation on the brain, furnishing novel insights into the neurobiological 
changes intertwined with its effects.

MATERIALS AND METHODS
Literature search
Study selection was conducted in accordance with the PRISMA guidelines[17]. This review was registered with 
PROSPERO (ID: CRD42023451942). A systematic search was conducted for relevant studies in the PubMed, Web of 
Science, Google Scholar, Embase, and CNKI databases up to July 29, 2023. The following keywords were used to identify 
candidate resting-state functional magnetic resonance imaging (rs-fMRI) studies: (“sleep deprivation” OR “sleep loss” OR 
“sleep restriction”) AND (“amplitude of low-frequency fluctuation” OR “ALFF” OR “fALFF” OR “regional homo-
geneity” OR “ReHo”) AND (“magnetic resonance” OR “MRI” OR “functional MRI” OR “fMRI” OR “neuroimaging”). 
Manual searches in the bibliographies of the retrieved studies and suitable reviews were also conducted.

Studies were considered eligible if they met the following criteria: (1) Original studies investigating the neural 
correlates of sleep deprivation in healthy subjects without any psychiatric or medical conditions; (2) studies that used a 
before-after sleep deprivation protocol or compared two groups of subjects with and without sleep deprivation; (3) 
studies focused on acute sleep deprivation (between 22 h and 48 h at once); (4) studies that reported whole-brain results 
in the stereotactic space [Montreal Neurological Institute (MNI)] or Talairach coordinates for ALFF, fALFF, dALFF, 
PerAF, and ReHo; and (5) studies published in English with peer review. Our exclusion criteria were as follows: (1) 
Editorial letters, case reports, systematic reviews, meta-analyses, or methodological studies; (2) intervention studies; (3) 
studies with fewer than seven subjects; and (4) studies that did not perform whole-brain analysis. For a study containing 
multiple independent patient samples, group coordinates were treated as separate datasets. The corresponding authors 
were asked via email for any additional data not included in the original publications. Two researchers (Zhang Q and 
Hou YZ) independently evaluated the studies, and the inclusion and exclusion criteria were evaluated by consensus 
(Table 1).

The included studies were primarily assessed for greater activation in sleep deprivation conditions than in non-sleep 
deprivation conditions (SD > NS) or for lower activation in sleep deprivation conditions than in non-sleep-deprivation 
conditions (SD < NS). We identified several studies with the same or overlapping samples. ALE meta-analysis was 
utilized to integrate reported coordinates from different experiments. If publications used the same or an overlapping 
group of subjects and reported several experiments, those data were combined. Accordingly, we merged experiments 
from various publications.

Quality assessment
The quality of the included studies was assessed using the Newcastle-Ottawa Scale (NOS), a well-established tool for 
retrospective studies. The NOS comprises three levels with a total of eight items: (1) Four items for subject selection; (2) 
one item for comparability between groups; and (3) three items for outcome measurement. The total possible score is 9 
points. Studies with a score ≥ 5 were eligible for data analysis. Each study was reviewed and rated by two authors (Zhang 
Q and Hou YZ) independently. If rating disagreements arose, the papers were discussed by the authors’ group to 
determine a consensus score.

ALE
ALE is a quantitative voxel-based meta-analysis method used in neuroimaging studies to estimate consistent changes in 
gray matter or functional images across multiple studies reporting peak activation coordinates of statistical significance. 
ALE models each alteration focus as the center of a spherical Gaussian probability distribution. This approach is em-
ployed to create spatial probability maps that highlight consistent brain region involvement in specific tasks or 
conditions. We set the parameters as cluster-level FWE P < 0.05, threshold permutations 1000, and P < 0.001, resulting in 
the generation of the ALE-image threshold map. Finally, the ALE analysis results were visualized using Mango software 
(http://rii.uthscsa.edu/mango/). Furthermore, to assess the stability (sensitivity) of the ALE meta-analysis results, this 
study employed the jackknife sensitivity analysis method. Specifically, the ALE meta-analysis was repeated 21 times, 
with each iteration excluding one of the 21 selected articles (in a nonrepetitive manner) before conducting the meta-
analysis.

http://rii.uthscsa.edu/mango/
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Table 1 Characteristics of the included studies

rs-fMRI 
scan

Field 
strengthRef. Sample 

size
Age (mean 
± SD)

Before After
Method Differential brain 

region Coordinate Sample 
size Quality

Dai et al[19], 
2012

16 21.00 SW SD 14 h 3.0 T ReHo 7 MNI 4/1/1

Dai et al[20], 
2012

15 22.00 ± 1.40 SW SD 24 h 3.0 T ReHo 8 MNI 4/1/1

Gao et al[21], 
2015

16 22.10 ± 0.80 SW SD 3.0 T ALFF 9 MNI 4/1/1

Dai et al[22], 
2015

12 24.83 ± 2.88 SW SD 72 h 3.0 T ALFF 1 MNI 4/1/1

Wang et al[23], 
2016

16 24.51 ± 2.75 SW SD 3.0 T ALFF 5 MNI 4/1/1

Li et al[24], 2017 16 20.94 ± 1.73 SW SD 24 h 3.0 T ReHo 15 MNI 4/1/1

Li et al[25], 2017 28 23.94 ± 1.73 SW SD 24 h 3.0 T ReHo 13 MNI 4/1/1

Zhou et al[26], 
2017

16 16.10 ± 0.90 SW SD 24 h 3.0 T ALFF 5 MNI 4/1/1

Robinson et al
[27], 2018

18 14.40 ± 1.94 SW SD 7.0 T ReHo 10 MNI 4/1/1

Chen et al[28], 
2018

22 26.901 ± 6.05 SW SD 3.0 T ALFF 7 MNI 4/1/1

Feng et al[29,30], 
2018

35 21.89 ± 1.97 SW SD 24 h 3.0 T zALFF & zReHo & 
fALFF1

2 & 2 & 3 MNI 4/1/1

Guo et al[31], 
2019

17 23.00 ± 1.37 SW SD - ALFF 19 MNI 4/1/1

Nechifor et al
[32], 2020

7 31.4 0 ± 5.70 SW SD 36 h 3.0 T fALFF 4 MNI 4/1/1

Qiu et al[33], 
2021

13 28.32 ± 3.71 Control SD 3.0 T ReHo 8 MNI 4/1/1

Xu et al[34], 2021 54 22.46 ± 1.81 Control SD 3.0 T fALFF 13 MNI 4/1/1

Zeng et al[35], 
2020

20 22.25 ± 1.12 SW SD 3.0 T perAF 5 MNI 4/1/1

Cai et al[36], 
2021

42 21.57 ± 2.25 SW SD 24 h 3.0 T ALFF 7 MNI 4/1/1

Nechifor et al
[37], 2022

7 34.40 ± 5.70 SW SD 36 h 3.0 T ReHo 1 MNI 4/1/1

Xin et al[38], 
2022

54 22.46 ± 1.81 SW SD 3.0 T PerAF 5 MNI 4/1/1

Yan et al[39], 
2023

20 20.00 ± 0.80 SW SD 3.0 T dALFF 30 MNI 4/1/1

Chen et al[40], 
2023

19 21.79 ± 2.37 SW SD 3.0 T ReHo 1 MNI 4/1/1

1The study of Feng et al[29,30] explored the same dataset using distinct methodologies.
ReHo: Regional homogeneity; ALFF: Amplitude of low-frequency fluctuation; fALFF: Fractional amplitude of low-frequency fluctuation; MNI: Montreal 
Neurological Institute; SW: Sleep-wake; SD: Sleep deprivation.

SDM
In this study, an SDM meta-analysis was conducted using AES-SDM v5.141 software (http://www.sdmproject.com) to 
identify significantly positive and negative activation peak coordinates at the whole-brain level related to sleep 
deprivation. Default parameters were utilized, including a full width at half maximum (FWHM) of 20 mm, an 
uncorrected voxel threshold of P < 0.005, a peak height SDM-Z > 1, and a minimum cluster extent of ≥ 10 voxels. The 
resulting images were visualized on the standardized anatomical template in MNI space. Furthermore, to assess the 
stability (sensitivity) of the SDM meta-analysis results, this study employed the jackknife sensitivity analysis method, also 
known as “leave one out” analysis[18]. This method is commonly used for hypothesis testing, confidence interval 

http://www.sdmproject.com
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Figure 1 Flow chart of the study selection strategy. VBM: Voxel-based morphometry.

calculations, and assessment of the stability of results in SDM meta-analyses. Specifically, AES-SDM was used to repeat 
the meta-analysis 21 times, with each iteration excluding one of the 21 selected articles (in a nonrepetitive manner) before 
conducting the meta-analysis.

RESULTS
General information of the included studies
The search strategy generated 171 related articles, and a total of 21 articles[19-40] were included in this meta-analysis 
(Figure 1). One of the studies (Pan)[29] used more than one analytical method to study sleep deprivation, and the 
different methods were considered three separate studies and were compared based on their individual quantities. 
Consequently, the effective number of “actual” experiments included in the study increased to a total of 23. Of the 171 
retrieved papers in this meta-analysis, 21 studies, including 23 experiments and 498 subjects, were eligible for inclusion 
(Figure 1 and Table 1). These 21 studies included 8 ReHo, 8 ALFF, 3 fALFF, 2 perAF, 1 zReHo, 1 dALFF, and 1 zALFF.

Changes in brain function during sleep deprivation
The ALE results indicated that there was an increase in gray matter in the right corpus callosum and a decrease in the left 
medial frontal gyrus and the left inferior parietal lobule in the sleep-deprived state compared to the pre-sleep deprivation 
state (Figure 2 and Table 2). The SDM results indicated heightened brain functional activity in the left striatum and right 
posterior cingulate cortex, along with decreased activity in the right cerebellar hemisphere, left medial frontal gyrus, 
corpus callosum, and right cuneus, compared to those in the pre-sleep deprivation condition (Figure 3 and Table 3). Both 
neuroimaging meta-analytical methods revealed an overlapping increase in brain functional activity in the left medial 
frontal gyrus following sleep deprivation. However, the right corpus callosum and right cuneus exhibited elevated 
activity in the ALE results but reduced activity in the SDM results.
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Table 2 Applying the activation likelihood estimation method to study changes in brain function activity after sleep deprivation

Peak MNI coordinate
Research methods Anatomical label BA

X Y Z
ALE value Volume (mm3)

ReHo and ALFF/fALFF decrease

Left middle frontal gyrus, BA 6 -34 20 42 0.01572180 1208

Left inferior parietal lobule, BA 40 -48 -58 40 0.02166488 992

ReHo and ALFF/fALFF increase

Subcallosal gyrus, BA 34 26 4 -16 0.015194423 680

ALFF decrease

Left inferior parietal lobule, BA 40 -48 -58 40 0.021612160 438

Left supramarginal gyrus, BA 40 -56 -50 40 0.008252133 263

Left middle frontal gyrus, BA 6 -34 20 42 0.015355002 744

ALFF increase

Right cuneus, BA 18 8 -88 20 0.014324005 704

ReHo decrease

Left posterior cingulate, BA 30 -9 -54 15 0.015816410 640

Right cuneus, BA 7 9 -72 36 0.009564294 448

BA: Brodmann area; MNI: Montreal Neurological Institute; ALE: Activation likelihood estimation.

Table 3 Changes in brain function activity after sleep deprivation using the signed differential mapping method

Peak MNI coordinate
SDM Anatomical label BA

X Y Z
SDM-Z P value Voxels

Increase

Corpus callosum 58 -20 2 2.573 0.005037844 227

Left striatum -28 -4 -2 2.087 0.018434286 19

Right postcentral gyrus, BA 3 22 -38 64 2.118 0.017078340 11

Decrease

Right cerebellum, crus 1 44 -58 -38 -2.878 0.002000034 548

Left middle frontal gyrus, BA 9 -38 18 48 -2.508 0.006063104 75

Right cuneus cortex, BA 19 16 -76 40 -2.141 0.016148150 17

BA: Brodmann area; MNI: Montreal Neurological Institute; ALE: Activation likelihood estimation.

Subgroup analysis
Conducting a subgroup analysis utilizing the ALE method on data analysis approaches such as ALFF and ReHo revealed 
the following: in the ALFF analysis, when compared to the pre-sleep deprivation state, post-sleep deprivation brain 
functional activity increased in the right cuneus and decreased in the left inferior parietal lobule, left superior frontal 
gyrus, left medial frontal gyrus, and right pallidum (Figure 2 and Table 2). In the ReHo analysis, in contrast to the pre-
sleep deprivation condition, sleep deprivation led to a decrease in brain functional activity in the left cingulate gyrus and 
right cuneus, with no regions exhibiting increased activity.

When employing the SDM method for subgroup analysis of the ALFF and ReHo data analysis approaches, no regions 
demonstrating either increased or decreased activity were discerned. This outcome may be attributed to the inclusion of 
too few studies when conducting meta-analyses of individual analytical techniques. Consequently, the central 
coordinates (location information of active brain regions) extracted from the included literature might be overly dispersed 
or insufficient in quantity to meet the threshold criteria, thus remaining undetectable.



Zhang Q et al. Sleep deprivation: Neural impact meta-analysis

WJP https://www.wjgnet.com 321 February 19, 2024 Volume 14 Issue 2

Figure 2 Abnormal regions identified in an activation likelihood estimation meta-analysis of neuroimaging studies in individuals with 
sleep deprivation. ReHo: Regional homogeneity; ALFF: Amplitude of low-frequency fluctuation; fALFF: Fraction amplitude of low-frequency fluctuation; dALFF: 
Dynamic amplitude of low-frequency fluctuation.

Sensitivity analysis results
The sensitivity analysis results for the ALE study showed that the left middle frontal gyrus was consistently identified in 
17 out of 21 analyses. The left inferior parietal lobule and right subcallosal gyrus were consistently identified in 18 out of 
21 analyses (Table 4).

The sensitivity analysis results for the SDM study showed that the right cerebellum crus Ⅰ was consistently identified in 
16 out of 21 analyses. The right cuneus cortex and right postcentral gyrus were consistently identified in 17 out of 21 
analyses. The left middle frontal gyrus, left striatum, and corpus callosum were consistently identified in 19 out of 21 
analyses. The corpus callosum itself was identified in 18 out of 21 analyses (Table 5).

DISCUSSION
This groundbreaking neuroimaging meta-analysis combined two different meta-analysis methods to explore changes in 
brain function during sleep deprivation. By integrating these two approaches, we revealed that sleep deprivation induces 
widespread changes in brain functionality across multiple regions, including the frontal lobe, parietal lobe, sensorimotor 
areas, temporal lobe, occipital lobe, corpus callosum, striatum, and screenlike nucleus, with the majority of these regions 
exhibiting downregulation associated with cognitive functions, sensations, motor functions, and pain perception. These 
findings underscore the critical importance of holistic brain analysis for obtaining a more profound understanding of the 
neuroactivity alterations underpinning sleep deprivation, with the potential to comprehensively elucidate its impact on 
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Table 4 Activation likelihood estimation sensitivity analysis results

Decreased Increased
Discarded article

Left middle frontal gyrus Left inferior parietal lobule Right subcallosal gyrus

Yan et al[39], 2023 N Y N

Chen et al[40], 2023 Y Y Y

Nechifor et al[37], 2022 Y Y Y

Zeng et al[35], 2020 Y Y Y

Li et al[25], 2017 Y Y Y

Nechifor et al[32], 2020 Y Y Y

Guo et al[31], 2019 N N Y

Robinson et al[27], 2018 N N N

Chen et al[28], 2018 N N N

Wang et al[23], 2016 Y Y Y

Gao et al[21], 2015 Y Y Y

Dai et al[22], 2015 Y Y Y

Dai et al[19], 2012 Y Y Y

Dai et al[20], 2012 Y Y Y

Xin et al[38], 2022 Y Y Y

Zhou et al[26], 2017 Y Y Y

Qiu et al[33] 2021 Y Y Y

Xu et al[34] 2021 Y Y Y

Li et al[24], 2017 Y Y Y

Li et al[25], 2017 Y Y Y

Feng et al[29,30], 2018 Y Y Y

Y: Yes; N: No.

brain function. Moreover, both the AES-SDM and ALE methods identified overlapping brain regions, specifically the left 
middle frontal gyrus and corpus callosum. This provides further evidence that the left medial frontal gyrus and corpus 
callosum may serve as the neuropathological basis for the brain damage induced by sleep deprivation. The neuropsy-
chiatric damage associated with sleep deprivation may be related to widespread abnormal resting-state brain activity 
involving the cerebral cortex and subcortical structures. These research findings significantly contribute to broadening 
our understanding of the neuropathological mechanisms associated with sleep deprivation, helping to elucidate how to 
treat and prevent related disorders.

The role of the medial frontal gyrus and corpus callosum in sleep deprivation. Adequate sleep forms the bedrock of 
memory formation, with quality slumber preparing the brain for the establishment of new memories[41]. Despite 
ongoing debates surrounding the physiological functions of sleep, it is widely acknowledged that sleep is beneficial for 
neuronal plasticity, which in turn supports brain function and cognition. Correspondingly, research has suggested that 
sleep deprivation can lead to impaired learning and memory[42], manifesting as memory decline, memory loss, and 
memory misconstruction, among other issues. As people continue to curtail their sleep duration, the impact of memory 
deterioration on daily life becomes increasingly pronounced. In a clinical study involving 96 participants, Santisteban et al
[43] reported that prolonged exposure to mild sleep deprivation negatively affects working memory. In a clinical 
experiment with 36 subjects, Hennecke et al[44] confirmed that sleep deficits impair spatial working memory. Animal 
research conducted by Scullin et al[45] and colleagues affirmed that rapid eye movement sleep deprivation and con-
tinuous sleep deprivation for 72 h both detrimentally affect memory capabilities.

The frontal lobe is intricately linked to various aspects of brain function, including cognition, sleep, working memory, 
short-term memory, sustained attention, planning, and behavioral control[46-50]. Previous research has employed 
neuroimaging studies to assess the corresponding brain responses and their relationship with behavioral changes in 
various environments[51]. Sleep deprivation can impair brain function and FC in various regions. Studies have indicated 
that after sleep deprivation, ReHo is greater in the left medial frontal gyrus, right precentral gyrus, right temporal gyrus, 
and bilateral posterior central gyrus[20]. One study revealed that sleep deprivation leads to reduced FC between the right 
prefrontal cortex and the right medial frontal gyrus[52]. Another study revealed that after 36 h of complete sleep 
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Table 5 Signed differential mapping sensitivity analysis results

Decreased Increased
Discarded 
article Right cerebellum, 

crus
Left middle 
frontal gyrus

Corpus 
callosum

Right cuneus 
cortex

Right postcentral 
gyrus

Left 
striatum

Corpus 
callosum

Yan et al[39], 2023 Y Y Y Y N Y Y

Chen et al[40], 
2023

N Y Y Y Y Y Y

Nechifor et al[37], 
2022

Y Y Y Y Y Y N

Zeng et al[35], 
2020

Y Y Y Y Y Y Y

Li et al[25], 2017 Y Y Y N Y Y Y

Nechifor et al[32], 
2020

N Y Y Y N N Y

Guo et al[31], 2019 Y Y Y Y Y Y N

Robinson et al
[27], 2018

Y Y Y Y Y Y Y

Chen et al[28], 
2018

Y N Y Y Y Y Y

Wang et al[23], 
2016

Y Y Y Y Y Y Y

Gao et al[21], 2015 Y Y N Y Y N Y

Dai et al[22], 2015 N N Y Y N Y Y

Dai et al[19], 2012 Y Y Y Y Y Y Y

Dai et al[20], 2012 Y Y Y Y Y Y Y

Xin et al[38], 2022 Y Y Y Y Y Y Y

Zhou et al[26], 
2017

N Y N Y Y Y Y

Qiu et al[33] 2021 Y Y Y Y Y Y Y

Xu et al[34] 2021 Y Y Y N Y Y Y

Li et al[24], 2017 N Y Y N Y Y N

Li et al[25], 2017 Y Y N Y N Y Y

Feng et al[29,30], 
2018

Y Y Y N Y Y Y

Y: Yes; N: No.

deprivation, with increasing working memory load, there was a decrease in FC between the left hippocampus and the left 
frontal pole, right superior frontal gyrus, and bilateral anterior cingulate cortex[53]. These findings suggest that sleep 
deprivation negatively affects brain function and FC in the medial frontal gyrus, leading to impairments in cognitive 
functions such as attention and working memory. In addition to the frontal lobe, studies using rs-fMRI have shown 
reduced ALFF in the precuneus[28]. Li et al[52] demonstrated that participants experiencing sleep deprivation exhibited 
decreased alertness and attention, and further investigation revealed reduced FC between the right precuneus and the 
right medial frontal gyrus after sleep deprivation. However, this finding contrasts with that of a study by Li et al[54], 
which revealed enhanced effective connectivity from the left medial frontal gyrus to the left superior parietal lobule after 
sleep deprivation. Furthermore, this functional neuroimaging evidence is further supported by a study involving 
structural imaging and brain metabolism. Sun et al[55] used FreeSurfer software to calculate gray matter volume (GMV) 
and cortical thickness (CT) using volume and surface measurements and found that 24 h after acute sleep deprivation, 
there was a significant increase in gray matter density in the right frontal pole, right middle frontal gyrus, and right 
superior frontal gyrus, while the GMV and CT of the right temporal pole significantly decreased. A PET study also re-
vealed a significant decrease in glucose metabolism in particular regions, including the frontal cortex, parietal cortex, and 
thalamus, following sleep deprivation, which correlated significantly with cognitive performance[56]. In summary, 
considering the impaired cognitive functions such as attention and working memory in the frontal lobe following sleep 
deprivation, the reduced activity in the middle frontal gyrus after sleep deprivation observed in this study may reflect a 
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Figure 3 Abnormal regions identified in a signed differential mapping meta-analysis of neuroimaging studies of individuals with sleep 
deprivation.

compensatory response to reduced attention during sleep deprivation[36].
The corpus callosum, comprising a collection of neural fibers within the brain, serves as a pivotal conduit facilitating 

information transmission and coordination between the left and right cerebral hemispheres, with alterations in its 
functionality potentially giving rise to impairments in interhemispheric information exchange and coordination[57]. One 
study indicated a link between sleep deprivation and functional impairments in the brain cortex, which could be 
associated with abnormalities in the development of the corpus callosum and visual radiation[58]. Zhu et al[59] reported 
that impaired interhemispheric connections may be a reason for sustained attention deficits following sleep deprivation, 
offering comprehensive insights into how sleep deprivation modulates interhemispheric connectivity and providing new 
evidence for the increased relevance of neuroimaging in sleepiness after sleep deprivation. Vargas et al[60] reported that 
young people with symptoms of insomnia are particularly susceptible to sleep deprivation, which can reduce their 
natural tendency to focus on positive information in the environment due to acute sleep deprivation. In addition to 
impairing interhemispheric information exchange and coordination, sleep deprivation may also lead to emotional 
instability and other issues. For instance, Taraku et al[61] discovered that individuals with depression exhibit decreased 
fractional anisotropy (FA) values in multiple white matter tracts, including the corpus callosum and corona radiata, after 
complete sleep deprivation. Furthermore, changes in FA values within the right superior corona radiata were signi-
ficantly associated with improvements in rumination after complete sleep deprivation[61]. Li et al[62] also found weaker 
FC between the left corpus callosum/posterior cingulate gyrus and anterior cingulate cortex in patients with comorbid 
primary insomnia and depression. Additionally, Bellesi et al[63] evaluated the ultrastructure of myelin sheaths in two 
brain regions (the corpus callosum and olfactory lateral bundle) in mice exposed to different durations of sleep 
deprivation, ranging from several hours to approximately 5 d of chronic sleep restriction. Chronic sleep deprivation led to 
an increase in the ratio of the axon diameter to the myelinated fiber outer diameter, which was mediated by a reduction 
in myelin sheath thickness in the corpus callosum and olfactory lateral bundle[63]. Therefore, sleep deprivation can have 
a significant impact on the structure and function of the corpus callosum, resulting in decreased motor coordination and 
increased emotional fluctuations, among other issues. Notably, individual responses to sleep deprivation may vary, and 
many studies on this topic have been conducted using animal models or small sample populations. These studies may 
not fully represent the diversity of human responses to sleep deprivation.

Further research is needed to determine the precise link between sleep deprivation and brain function and structure. 
This approach will provide a more comprehensive understanding of the neurobiological mechanisms underlying sleep 
deprivation and pave the way for the development of more effective strategies to mitigate its adverse consequences.

Reasons for discrepancies with previous meta-analyses
By combining two methods (ALE and SDM) and refining the inclusion criteria (only including literature reflecting 
changes in spontaneous brain activity), this meta-analysis identified the left medial frontal gyrus, right cuneus, and 
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corpus callosum as brain regions affected by sleep deprivation. However, in an ALE meta-analysis, Javaheripour et al[14] 
reported reduced activity in the right superior frontal gyrus and superior parietal lobule. Our study did not yield the 
same results, which could be due to several reasons. First, their study included not only ReHo, ALFF, FC, and ICA but 
also t-fMRI, VBM, and PET-related data. The differences in experimental design, data preprocessing, and statistical 
methods used for t-fMRI, PET, and VBM compared to those used for rs-fMRI (ReHo, ALFF, FC, and ICA) might have led 
to the absence of brain regions showing abnormal activity. Second, different meta-analysis software may have been used. 
Third, our study included differences in sex, age, educational level, disease severity, and disease duration, which might 
have contributed to the differences in the results. Finally, the central coordinates (location information of active brain 
regions) extracted in our study were dispersed or insufficient in quantity to meet the threshold, potentially resulting in a 
lack of significant findings. This meta-analysis shares similarities with the research of Javaheripour et al[14] but also 
presents differences, enriching our understanding of the mechanisms underlying impaired brain function before and after 
sleep deprivation.

Limitations
Several limitations should be noted in this meta-analysis. First, the number of included studies was relatively small. 
Second, while ALE and SDM effectively control false-positive results, avoiding false negatives is a challenge[18]. Finally, 
it was not possible to completely eliminate heterogeneity among the included studies, such as variations in the 
demographic characteristics of patients and different imaging modalities representing aspects of resting-state 
abnormalities. For example, ALFF and ReHo are related to the strength and temporal synchronization of spontaneous 
neuronal activity, respectively, in various regions of the whole brain[64,65]. Despite these differences, multiple analytical 
methods can complement each other and provide more comprehensive information. Different analysis modalities can 
also detect similar patterns of resting-state abnormalities. For instance, in most of the included studies, regardless of the 
imaging approach, reduced activity in the occipital lobe during the resting state was consistently observed.

CONCLUSION
In summary, this meta-analysis discerned notable and consistent alterations in brain function consequent to sleep 
deprivation, notably within the left middle frontal gyrus and corpus callosum. These discoveries hold the potential to 
provide fresh perspectives regarding the neuropathological underpinnings of sleep deprivation. Future investigations 
must further explore the potential applications of these brain regions, characterized by modified functionality, in the 
diagnosis and ongoing assessment of sleep deprivation.

ARTICLE HIGHLIGHTS
Research background
Sleep deprivation, a widespread public health concern, is characterized by inadequate or severely reduced sleep. With 
societal acceleration and increased individual pressures, the prevalence of sleep deprivation has risen, impacting 
cognitive function and overall well-being. Despite extensive research on its health implications, a comprehensive 
understanding of how sleep deprivation affects brain function remains incomplete.

Research motivation
Quality sleep is essential for well-being, yet a significant proportion of the global population consistently falls short of 
recommended sleep durations. Sleep deprivation is associated with various health risks, including obesity, metabolic 
disorders, and cognitive decline. Understanding the consistent neurobiological alterations resulting from sleep loss is 
crucial for devising effective preventive and therapeutic strategies.

Research objectives
To address the inconsistencies in existing neuroimaging studies on sleep deprivation by identifying and elucidating the 
brain functional changes associated with acute sleep loss. Through the integration of signed differential mapping (SDM) 
and activation likelihood estimation (ALE) meta-analytic methods, the study aims to provide a comprehensive 
understanding of the neuropathological impact of sleep deprivation.

Research methods
A systematic search following PRISMA guidelines was conducted across multiple databases to identify 21 eligible studies 
focusing on acute sleep deprivation in healthy subjects. The studies, written in English, reported whole-brain functional 
data and met specific inclusion criteria. SDM and ALE meta-analyses were employed on functional magnetic resonance 
imaging (fMRI) data to analyze brain functional changes consistently associated with sleep deprivation.

Research results
The meta-analysis, encompassing 21 studies with 23 experiments and 498 subjects, identified consistent brain functional 
alterations post-sleep deprivation. Notable changes included increased gray matter in the right corpus callosum and 
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decreased activity in the left medial frontal gyrus and left inferior parietal lobule. SDM revealed additional alterations in 
brain functional activity, providing a comprehensive view of the impact of sleep deprivation on neural processes.

Research conclusions
This study consistently identified brain regions affected by sleep deprivation, emphasizing the left medial frontal gyrus 
and corpus callosum as key areas influenced by acute sleep loss. The findings contribute valuable insights into the 
neuropathology of sleep deprivation, offering a foundation for further research and potential interventions aimed at 
mitigating its adverse effects on brain function.

Research perspectives
Future research should explore the clinical implications of the identified brain regions and their functional changes in the 
context of sleep deprivation. Additionally, investigations into individual variability in response to sleep loss and the 
potential longitudinal effects on brain function will further enhance our understanding of the complex interplay between 
sleep, cognition, and neurological health.
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